Deep Geothermal Projects in Germany
Status and Future Development

Dr.-Ing. Horst Kreuter
GeoThermal Engineering GmbH

Paris
04.05.2011
I. The Energy World after Fukushima

II. Opportunities
 ▪ Projects
 ▪ Electricity
 ▪ Heat
 ▪ Research and Development
 ▪ Industry
 ▪ Opportunities Worldwide

III. Risk and Risk Mitigation
 ▪ Exploration Risk
 ▪ Drilling Risks
 ▪ Environmental Risks (Seismicity, …)
Impact

- Nuclear on the downswing?
 - Germany stops 7 old power plants
 - Moratorium for 3 months
 - Technical check up
 - Exit from nuclear power until 2017, 2020, 20??
 - “Bridge” for Renewable Energies
- Opportunity for Renewables and Geothermal
 - Geothermal: Base Load
 - Better support of Geothermal Energy
 - Electricity: Raise in FiT and other support schemes
 - Focus on Heating and cooling projects
 - R&D
 - Not just electricity
 - More Funds
Geothermal Power Production

POWER PLANTS

- NEUSTADT-GLEWE
 250 KW
- LANDAU
 2,5 – 3 MW
- UNTERHACHING
 3 MW
- BRUCHSAL
 500 KW
- Simbach-Braunau
 150 KW
Regions of Activity
Project Development

- Berlin
- Hannover
- Groß-Gerau
- Frankfurt
- Brühl
- Rülzheim
- Karlsruhe
- All of the Molasse Region (>20 Projects)
- Krefeld
- Munster-Bispingen
- ...
Power Plant Landau
Power Plant Unterhaching
District Heating Unterhaching
Drilling
Geothermal Heating Riehen

Wärmeverbund Riehen AG
R&D Challenges

GOALS
- EFFICIENCY
- RISK REDUCTION

TOPICS
- EGS
- PUMPS
- DRILLING TECHNOLOGY
- BINARY POWER PLANTS
- SEISMICITY
Geothermal Industry

History (1999 – 2004)

- **Communities**
 - Unterhaching, Neuried,…
- **Private Initiatives**
 - HotRock
 - GeoEnergy,…

Today

- **Local Utility Companies**
 - Munich, Mainz, Heidelberg,…
- **Industry**
 - Manufacturers (Siemens, Hochtief, Evonik, Linde,…)
 - Big utilities (RWE, EnBW,…)

Geothermal Industry
Geothermal Consultants

History (1999 – 2004)
- Small (3 – 10 employees)
- Highly specialized (deep geothermal applications)
- GTN, GeoT, GeoTec,…
- Only in Germany

Today
- Big Consulting Companies
 - Lack of Know-How ?
- Going International
 - Europe, Africa, South America, Asia,…
Future Potential

Glitnir Bank, 2008
Risk of Energy Generation

- **Nuclear:** Tschernobyl, Fukushima
- Nuclear waste storage?

- Fossil fuels: global risks, greenhouse gas, climate change
- **CO₂-**goals?

- Risks of geothermal and other renewable energies: different risks on a much smaller scale
Risk of Renewable Energy Generation

- **Wind**: Environmental risk fauna / shadow / view
- **Hydro**: Environmental risk massive interference with nature, seismic risk, dam failure
- **Solar**: Land requirements, environmental risk during disposal
- **Biomass**: Concurring uses: competition with food production & land requirements
Risk in Geothermal Applications

- Relatively risk free technology
- Clean, renewable, low CO$_2$ footprint, base load
- Nevertheless there is some risk
 - Exploration risk
 - Drilling risks
 - Environmental risks
 - Seismic risk
Environmental Risks

- Sustainable resource management
 - Inexhaustible on the human time scale
 - Continuous heat flow from the earth’s core
 - Sufficient distance between production- and injection well
 - Sustainable production rate
- German Environmental Agency (Umweltbundesamt 2008): Environmental Risks and effects are very small in comparison to other energy generation systems
 - Almost no negative ecological impact from the operation of a geothermal power plant
 - Especially heat projects (efficiency)
Risk in Geothermal Projects

- **Drilling Risk**
 - Lost in hole
 - Blocked string
 - ...

- **Exploration Risk**
 - Temperature
 - Flow Rate
 - Chemistry ?
 - Long Term ?

- **Technology**
 - Hydrothermal Yes
 - EGS (HDR,…) No !
- High financial risk

- Success = defined temperature & production with fixed drawdown of water level
- Definition on commercial basis
Who needs an Insurance?

- Only one project
 - Small Developers
 - City and Villages
 - Small utility companies

- Project Portfolio
 - Frame Contract

Soultz, Alsace
 Unterhaching (2003)
- First risk mitigation for geothermal exploration risk in Germany
- Munich Re
- One timer
- Features: Bavarian support and „non claim bonus“

 Contract Offer
- Molasse basin and Upper Rhine Valley
- North German Basin - not yet

 Technology
- Hydrothermal :Yes
- EGS (HDR,…): No
Quality

- Quality of developer
 - Financial strength
 - Technical ability (know-how, references,…)
- Quality of development
- Project description
 - Geology
 - Drilling concept
 - Stimulation program and test program
 - Power plant concept (permissions, contracts,…??)
 - Permissions for drilling, etc.
 - Contractors and key personal
 - Business plan and insurance
- Third party opinion (exploration risk)
Private Insurance Market

Definition of success or failure

- Exploration risk = risk, not to be able to exploit a resource in sufficient quantity or quality
- Quantity = Thermal output P which can be extracted from the brine

$$P = \rho_F c_F Q (T_i - T_o)$$

- The amount of P is important. The combination of the parameters is less important.
- Covering P instead of fixed pairs of parameters gives the insurance company a higher flexibility and a lower premium
Private Insurance Market

Insurable?

Feasibility study

Stimulation and test concept

Well design

Drilling concept

Seismic exploration

Exploitation concept

Intensive dialog
Private Insurance Market

Precondition: High Probability of Success

Premium Basis: Insurance Parameters, Own Risk Share

Total insured investment costs:
- drilling, stimulation, test program
- (seismic, drilling pad, ...)

Integral Part of Policy:
Stimulation Concept, Hydraulic Test Layout

Insurance contract
Drilling Risks

- Technical problems while drilling
- Unexpected geological conditions
- Lost in hole
- Time overruns (fishing)
- Can be insured
 - In a conventional builder’s risk insurance as an additional coverage
 - In Government risk coverage programs (MAP Germany)
Seismic Risk

- Induced seismic events in Basel (2006) and Landau (2009) – a topic to be taken seriously
- EGS-projects (Basel, injection well in Landau)
 - stimulated geothermal systems
 - Hydraulic stimulation to build an artificial underground reservoir
 - Change of natural stress conditions
Seismic Risk

- Risk management
 - Seismic risk analyses
 - Well controlled reservoir development and management
 - Seismic monitoring
 - Action plan
 - Liability insurance
Seismic Risk

- Risk communication
 - Fear of earthquakes – Danger of overestimating the risk
 - Relatively low magnitudes – relative low damage potential
 - Risk = probability x damage

- Mining vs. EGS-projects

<table>
<thead>
<tr>
<th>Year / Time</th>
<th>Project</th>
<th>Maximal magnitude (M<sub>L</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-2007</td>
<td>GeneSys (Horstberg), Deutschland</td>
<td>No measured events</td>
</tr>
<tr>
<td>1980-1993</td>
<td>Fenton Hill (Los Alamos), USA</td>
<td>~ 1</td>
</tr>
<tr>
<td>2003</td>
<td>Bad Urach, Deutschland</td>
<td>1,8</td>
</tr>
<tr>
<td>1980-1993</td>
<td>Rosemanowes, England</td>
<td>1,9*</td>
</tr>
<tr>
<td>1985-2003</td>
<td>Hijiori, Japan</td>
<td>2,4*</td>
</tr>
<tr>
<td>2003</td>
<td>Soultz-sous-Forêts, Frankreich</td>
<td>2,9</td>
</tr>
<tr>
<td>2006</td>
<td>Basel, Schweiz</td>
<td>3,4</td>
</tr>
<tr>
<td>2003</td>
<td>Cooper Basin, Australien</td>
<td>3,7</td>
</tr>
</tbody>
</table>
Environmental Risk

- Mining authorities protects the interests of residents and the environment
- Drilling
 - Oil standards
 - Well established technology
 - Blow-out-preventer avoids oil spills
 - Restrictions in water and nature protection areas
- Operation
 - Safety precautions prevent environmental hazards
 - Closed cycles
- Radioactivity
 - Radioactive elements dissolved in the geothermal brine
 - Avoid scaling in filters and pipes – overpressure
 - Health and safety protection: Measurements and controls
 - Special radioactive waste disposal path
Communication

- Project Communication: early, continuous and transparent
- Local acceptance is important for project success!
 - Public relations
 - Addressee: public, local and regional authorities, political decision makers
 - Supporters: keep positive attitude, get their support
 - Opponents: Take them serious and reduce their fears
 - Successful communication especially when these conditions are met:
 - Heat projects with a direct benefit for local residents
 - City or city utility as project developer
 - Decentralized power and heat production in a 100% renewable concept
THANK YOU FOR YOUR ATTENTION!

Dr. Horst Kreuter
04.05.2011 Paris